Histone deacetylase inhibition facilitates massed pattern-induced synaptic plasticity and memory.

نویسندگان

  • Kiran Pandey
  • Kaushik P Sharma
  • Shiv K Sharma
چکیده

Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well understood. Here we show that increasing the level of acetylation enhances long-term potentiation induced by massed pattern of high frequency stimulation. Furthermore, enhancing acetylation level facilitates long-term memory by massed training. Thus, increasing acetylation level facilitates synaptic plasticity and memory by massed patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone Deacetylase Can Enhance Inhibitory Transmission

Transcription factors bind to regulatory elements in DNA and activate or suppress gene transcription. DNA is tightly wound around histone proteins, however, and before transcriptional regulators can bind, histones must loosen their grip. This is achieved by acetylation,whichismediatedbyhistoneacetyltransferases (HATs) and reversed by histone deacetylases (HDACs). Both HATs and HDACs have roles ...

متن کامل

Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory.

Epigenetic mechanisms have been widely implicated in synaptic plasticity and in memory consolidation, yet little is known about the role of epigenetic mechanisms in memory reconsolidation processes. In the present study, we systematically examine the role of histone acetylation and DNA methylation in the reconsolidation of an amygdala-dependent Pavlovian fear memory. We first show that the acet...

متن کامل

An essential role for histone deacetylase 4 in synaptic plasticity and memory formation.

Histone deacetylases (HDACs), a family of enzymes involved in epigenetic regulation, have been implicated in the control of synaptic plasticity, as well as learning and memory. Previous work has demonstrated administration of pharmacological HDAC inhibitors, primarily those targeted to class I HDACs, enhance learning and memory as well as long-term potentiation. However, a detailed understandin...

متن کامل

Histone deacetylase 3 inhibition re-establishes synaptic tagging and capture in aging through the activation of nuclear factor kappa B

Aging is associated with impaired plasticity and memory. Altered epigenetic mechanisms are implicated in the impairment of memory with advanced aging. Histone deacetylase 3 (HDAC3) is an important negative regulator of memory. However, the role of HDAC3 in aged neural networks is not well established. Late long-term potentiation (late-LTP), a cellular correlate of memory and its associative mec...

متن کامل

Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation.

Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance both memory and synaptic plasticity. The current model for the action of HDAC inhibitors assumes that they alter gene expression globally and thus affect memory processes in a nonspecific manner. Here, we show that the enhancement of hippocampus-dependent memory and hippocampal synaptic plasticity by HDAC inhibitors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Learning & memory

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2015